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Kirchhoff's well known theorem on the uniqueness of the equllibrium state of
a linearly elastic medium makes it necessary to regard any attempt at con-
structing a theory of bifurcation of equilibrium for such a medium as logic-
ally unjustifiable. Construction of a theory of bifurcation must necessarily
be based on the investigation of equilibrium states which are close to the
equilibrium state being studied for a nonlinearly elastic solid.

In Section 1 a summary of notation is given and the formulas of tensor
analysis which will be applled later are recalled. In Sections 2 to 4 the
required geometric and statical relatlons are given for a nonlinearly elastic
isotropic body. In Sections 5 to 7 a derivation of the equations for equi-
1librium states near a previously known equilibrium state is presented. This
theory 1is applied to the case of a compressed bar considered as a three-
dimensional body in Sections B and 9, with the simplest specification of the
strain energy density expression. The bifurcation value of the parameter
{the compressive force) turns out, of course, to be very near the Euler crit-
ical value, and coincides with it if the cross-sectional dimensions of the
bar are neglected in comparison to its length.

1. Notation. Two states of a volume of a continuous medium are consid-
ered: an initial state (the volume v bounded by the surface & ) and a
final state {the volume V¥V bounded by the surface S ). A point of the
medium is specified by the material coordinates ¢, ¢%, ¢3. Its radius
vector in a fixed Cartesian system of axes OX¥Z which is equal to »{g?,
g%, ¢°) in the v-volume 1s transformed into the radius vector R{g', ¢2, ¢2)

in the V~volume. The coordinate vector bases
ar R
I, = ek R,= o (1.1)
are introduced in the v- and V-volumes, respectively. In terms of these
matrices [guf = |r,-rx]| and | Gu|=|R,-Rg| of the covariant components

#) The contents of Sections 1 to 4 of this paper were reported in more ex-
tendgg fgggbin a seminar of the Institute for Problems of Mechanics, Febru-
ary N .
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of the metric tensors @ and @ of these volumes, are defined. The elements
g** and G** of the inverse matrlces give the contravarlant components of
these tensors, in terms of which the assoclated coordinate bases are defined

ré = gSkrk, R® = GskRk (12)

The mixed components of the metric tensors @ and @ are denoted, as

always, by s—=k
g =1 Tk=g"grk —{0 sk
1 s=k
8
G =R Re=G"Gu=1y 1}
and the dyadic representations of these tensors are written in the form
= gar’r* = g™¥r,ry = r'r, = g’ (1.3)
G = G4R°R* = G*R,R; = R'R, = R,R* (1.4)

The tensor @ plays the role of the unit tensor in the v-volume, as does
¢ 1in the V-volume. Multiplication by @ or & on the left or right of
any tensor specified in the corresponding volume results in the same tensor.

Differential operations on tensors in the wv- and V-volumes are carried
out with the ald of the nabla operators, the symbolic vectors
7] ° s O
aqs ’ v R aqs

For instance, the tensor of the second order which 1s the gradilent of a
vector & 1s represented by the dyadic product

V=r

da
Va = r‘?q-; =r'r'Var =rnVe", (er=a-ry, a* =a-r¥) (1.5)

vao — R. da
* a¢°

=RR*V,°0,° = RRyV,%*,  (a° = a-Ry, ™ =a-R¥) (1.6)

Operations in the V-volume (with the metric tensor @ ) are indicated by
the superscript ° here and further on in Sections 2 to 4. Covariant dif-
ferential operators are denoted by v, and v,”, so that

vsak = ﬂ - { sk } ay, Vaoako aak {sk}

From what has been sald we have also
Va = r'r'V,a, = r’r,V,a', V°a = R°R'V,%,° = R*R,V %"
In addition we give the expression for the divergence of a second-order
tensor @ . 1t is written in, say, the metric of the v-volume in the form

. , P F) st t
GvQ=V-Q=x g5 rmrg™ =rV g =r ( o0 +{a }‘1"+{sr}"’")

Recalling also that

{s}_ Vg r{t}__arr
st Veag “lor ] ag?

we arrive at a relation which will frequently be applled in what follows
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1 d
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Ve o Vegte Ve

o 0 (1.7)

The determinants [@,,| and |G,,| are denoted by ¢ and ¢ . The volume
elements in v~ and V-volumes are determined by the expressions

dto = | gdg*dgrdg®, dv = Y Gdg'dg*dg®
and 1t follows from the law of conservation of mass that

PoVe=0VG (1.8)

where go and p are the densities in the initial and final states.

The transpose of a tensor ¢ 1s denoted by ¢%, e.g.,
(Va)* = r'r*V,a; (1.9)
The differential of a vector #& 15 expressed in one of its forms as
da =dr.-Va = (Va)'-dr = dR-V°a = (V°a)*.dR (1.10)

2. Measures of deformation., In the geometry of the v-volume we compute
the tensor gradient of the radius vector R of a point in the V~volume, and
also the transpose of this tensor. In accordance with Equations {1.1),(1.5)

and (1.9) VR = rR,, (VR)* = R,r* (2.1)

From this the two tensor measures of deformation which will be used below
are defined

G* = VR. (VR)* = I‘SR3°Rkl'k = (rgr°r¥ (22)
M = (VR)*.VR = Ryr*- r*R; = g*R, Ry (2.3)

The tensor & 1is defined in the metric of the v-volume, N in the y-
volume. The invariants of these tensors are equal, since the eigenvalues of
the symmetric matrices of the products 4p and B4 of matrices 4 and P
are equal. We shall limit ourselves here to the introductlon of these two
measures of deformation.

We note that the covariant components in the v-metric of the measure of
degormation 0" are equal to the covariant components of the metric tensor
¢ of the p-volume. However, these are dlfferent tensors. Thus, the contra-
variant components of the measure of deformation are computed according to
the general rule for transformation from covariant to contravariant compo-

nents in the v~-metric st o
G™" = gkgtrGy, == G (2.4)

Analogously, )
8
MY = g%, My = GxGirg" £ gst

Setting dr = e |dr|= eds
VdR-dR =dS = Y dr VR-(VR) -dr = ds Je-Gx-e
so that the change of a line element of the v-volume is determlned by the
measure of deformation &6%.

In the v~volume consider the elementary tetrahedron N4;424s having edges
M4, = r,dq* extending from the vertex ¥ . The oriented area A;4,4, is given
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by the vector #nde , where 1n 1s the unit vector normal to the area. Then
0do = Yy (ry X rodgrdg® + vy X rydgldg® + vy X ridgidgl) =
= Vg (c'dg*-dg® + rdgidyt 4 ridgtdg?)

so that

Vedg'dg® = nido, Vgdg¥dg® = mdo, V¥ gdg*dq* = nodo, n,=n.r,
In exactly the same way, for the V-volume
Nd0 = }i& (Ridq%dq® +- deq‘*iiql -+ R3dgldg?)
VGdgldg* = Ny*d0, Y Gdgdg® = N“d0, Y Gdg*dg* = No*d0, N,*=N-R,

so that

Nd0 = VEER’R.dO, ndo = V g/Gr*N,°do (2.5)
and further a0 ¢ ) J
— e o [ & . 2
o (? Gsknank) s - = (._G_ N.-M N) (2.6)

This last equation determines the geometric significance of the measure
of deformation M.

The following expression for the unit vector N normal to the surface S
will be applied many times below

N ¥ 6*nn = R°n, = R'r,-n = V°r.n (2.7)
where ¢°p 4is the gradient of the radius vector of the v=volume computed
in the metric of the V-volume; this is the 1lnverse of the tensor vR

Vor-VR = R°r,- "Ry = R°R, = &, V°r = (VR)? (2.8)
With the ald of the tensors v°r and (v°p)*, the measures of deformation
gx = vOr.(VGr)* — g;kRst — M-l’ m = (vor)*.vor — Gs"r,r; e (Gx)—l

are defined as in (2.2) and (2.3).

It is obvious from these relations that the elgenvalues of the tensors
G*and M, which are equal to each other, G;‘ =M , 8re equal to the recipro-
cals of the eigenvalues g, == M, of the tensors g and M

G =M, = (g)* =m"

From this fact the equations which relate the principal invarlants of

these tensors follow (2_9)

X 1 x 1 X S 1
L) =g L0 L) =m0, L) = 505
But, according to (2.2) and (2.8)
I (G) = Gyr®-r* = g% Gy, I, (g") = gaR*-R* = g G**

and, defining [3 (@) 28 the square of the volume ratio dt/dv, , we have
x [&
L) =g"6u, L(@)=Sg6% L(E)=5 (210

3. The stress tensor. This symmetric temsor T = T* of second order
is usually defined in the V-volume by 1ts contravariant or mixed components
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T _ O“Bsnz - TgosRSR! (31)
Its product with the oriented area vector ¥Nd0 1in the V-volume deter-
mines the force acting on this area <¢ydo

ty=N-T =T.N = 1NR, = t,”NR! (3.2)
The equation of equilibrium of a volume of the continuous medium is writ-

t in ¢
en in the form VO 4 oK = 0 (3.3)

where X 1s the body force vector (per unit mass). From (1.7) and (1.8}
the last equation may be represented in the forms

0 .0, - a i
357 VO R+ 00VgK =0, L VGu"R'+pVeK=0 (3.4)

The equation of egquilibrium on the surface § 1is adjoined to the above
which, from Equations (2.7) and {3.2), is written in the form

F V6% nn= R, = 19, R (3.5)
where P 18 the external surface force per unit area of 5 .

The virtual work per unit v-volume of the external forces X and P can

be represented as
8 Ay = Y2 V Glgv8Gy -~ (3.6)

In a perfectly elastic body this quantity is equated to the variation of
the straln energy dentity A4 , which 18 equal to the variation of the inter-
nal energy density of the body for an adlabatic process of deformation and
to the free energy in an isothermal process. The specification of this quan-~
tity in terms of the components of the measure of deformation G and the
temperature (in an adiabatic process) or the entropy (in an isothermal one)
determines the equation of state of a perfectly elastic body

1 G . a4
< ‘/—g— =5, (.7
4, The squation of state of a perfectly elastic isotropiec body. In an
isotropic body the strain energy density A4 depends on the invariants of
one or the other measure of deformation, These invariants are expressed in
terms of each other in (2.9). Let us assume that 4 1s given in terms of
the invariants Jp (G*) = [,

Then, according to Equation (3.7},

— 3
1 "/ G ost __3/1 _._aIk
=V 5 *‘,‘Zl aT; 9G,,
From (2.10) we have

oIy o ais . 1 _3G . )
3Gs:-g ’ G, g Gy 1,6

al x s
sas = 1" — (6 = Iig" — "G,y

(without going into the details of the derivation of these from formulas
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which have been given)}. The equatlon of state of a perfectly elastic iso-
tropic body can then be written in the form

Y, ‘[a'/—g o8t c(o)gst_ cilgsagrG . |- DGt (4.1)
where the "generalized moduli of elasticity” are denoted by c®

a4 EY 84
0 — 9 04 D =
c““azl“*‘ll ar» © 3T

= Iy 52 (4.2)

2
Noting that from {2.3)

Mz = g‘quRq‘grthRt = gCQgtqurR'R!
and recalling (3.1) and (1.4), we arrive at the equation of state in Pinger's
form. T .
Y,V GjgT = cOM — cOM? } -1 G (4.3)
It 18 natural to express the tensor T’ 1in terms of tensors defined in

the V-volume. It can also be related to the Almansl measure of deformation
g~ ; for from (2.8)

2V GI8T = O (7)™ = e (g7)2 + 716 = 69G — elg* - eg>® (4.4)
The negative powers of the tensor g" h re are expressed in terms of
positive powers (e.g. with the ald of the Cayley-Hamilton theorem). The

generalized moduli e are determined by Equations ¢4.5)
94 8A 04 84
0)
e()__[s'a_u_, em:wl—'_'—ll'b'ﬁ" e(”:—[—ﬁ;—, (I’ = L (g*)

which are obtained by replacing the varlables I, by the I,’ wilth the aid
of (2.9).

Example . For a bar loaded by forces which are uniformly distrib-
uted on its ends and are directed along the axis of the bar 0¢;, the point

transformation from the initial state to the final one (from the v-volume to
the V-volume) is given by Formulas

Ty = Oyl Ty = Ogay, &y = Qyag  (Q, ==const)

where the ¢, are the Cartesian coordinates 1in the v-volume, which play the
role of the material coordinates. Here g — FE, the unit tensor

G,=a2 G*=a2 G(F=Gu=0 for sk
so that

g=1, G=IL=oa"0y?, Ii=0m?- 04 ag, Iy=ts®+ astos® + cs¥ty®
and, from (4.1) and (4.2) the nonzero contravariant components of the tensor
are .
1ot = ®— (Vg2 4 g ~2 (s=1,2,3)

The equation of equilibrium (3.3) is satisfled, since T 1s a constant
tensor. From the condlitlon that surface tractions are absent on the lateral
surface, 1t follows that 7°''= 1°22s 0 throughout the volume, so that
a,; = 0z and

¢® e (g2 4 Vg, =2 — 0, 1 /20(1“’a31:033 = ¢ e (Wgg? | V™2 (4.6)
The physical component 32 of the tensor 1s equal in this case to qs210%3;

therefore, the axial force @ = §8 = §y,*®, where S, 1s the area of the
original cross sectlion of the bar, is expressed in the form

-1
Q =2 (C(mds — g 1 "as ) So (4.7)

We shall speclfy the expression for the strain energy density in a form
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which is equivalent (*) to the expression in the linear theory of elasticity

A=1g(h+20) 1,2 — Y, (3 + ) 1), — Yqud, (4.8)
where X and u are constants. Then
0 =1, M — R —2), D=1y, M=o (I, = 2a,% + ag?)

8o that from (4.6)
(0 — (Vg2 = %(ul —m— g+ Hear=0, mop et —wy) (49
From the first equation we find the relation ‘connecting a;? and q,°
12 - vag2 =v -+ 1 (v = ij:l-—ll—)_) (4.10)
and from (4.7) and (4.9) we find
Q =1/, ESous (as?— 1), E=20(1 +v) (4.11)
or, noting that q,= 1 + 8,, where &, 1s the unit axial extension,

Q = ESobs (1 & 8s) (1+ Y2 8s)

This is the nonlinear law of behavior of a stretched specimen under the
assumption that the strain energy density 1s defined according to (4.8). It
reduces to the linear Hooke's law for 6y« 1 . The notation 1, p, v, and
£ was, of course, chosen by analo with the linear theory. FPurther on,
in Sections 8 and 9, Equations (4.3 to (4.11) will be applied in the case
of compression; then qs< 1 and q;> 1 .

5. S8uperposition of deformations. A displacement deflned by the vector
uwW 18 given to the points of the ¥V-volume, where u 18 a small parameter.
In the calculations given below, only terms of first degree in this parameter
are taken into account. The radius vector of a point in the resulting V‘-

volume which is bounded by the surface S’ is equal to

R'=R+pw (.0
and the vector basis is given by the triad of vectors (**)
R/ =R+ w 'Z_wg' =R+ "'Rivswt (52)
q

The covariant components of the metric tensor (' in the V’'-volume are,
therefore, equal to

Gsk' == RS, 'Rk’ = Gsk -I— p. (szk + kas) = Gsk ’-‘l‘-‘ 2”83}( (5.3)

where ¢,, are the covariant components of a linear strain tensor
e =def w="1/[VWw+ (VW)*] = YL R°R¥ (Vawy + Viw,)
The covariant components of the tensor G’ are determined from the rela-

tion
G = GGy’ = (G + pg™) (G + 2perk) = G 4 Pg* Gry + 20G gy

so that, inasmuch as @,'® — G’

qerr}f + 2Gsr8rk — 0’ G — G{r _ ZuGerktesk (54)

*) In the linear theory the energy is given in terms of the invariants of
the strain tensor and not those of the measure of deformation.

**) In all that follows, the calculations are carried out in the metric of
the V-volume; the index © 1s, therefore, omlitted.
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The vectors of the assoclated basis are now constructed in accordance
with (1.2)

R = G'"R, = R'— 2uR%G ey + G*RIVw, = R — G RIV
To the same order of accuracy, the metric tensor of the ¥’-volume turns
out to be
G' = Rg’R'l = Rth + p,(R"'R'Vtwm— R‘R"‘Vmwt) = Rth‘ =6 (55)
The determinant §#’ is computed most simply from the relation
G'=G+P(?£;) _G_’_p.gg;ag:: :G—!’*szGs‘est

p=0

8o that L _
G =G (1 + 2p9), ]/G' = ]/G (1 4+ no), ¥ = Gey (5.6)
where ¢ 1s the first invariant of ¢ .

The expressions for the principal invariants of the measure of deforma-
tion @’ are computed from (2.10),{5.3),(5.4) and (5.6)

I (@) = I + 2pg*ey, Is(G¥) = I3 (1 + 2pv)
12 (le) =] Ig + 2}1 (6‘]2 — IggngStqustq) (5.7)
80 that the volume element on the ¥’ -volume is

dv’ = (1 + pd)dr, dv = Y Gdq*dg?dq®
The vector of the oriented area can be written in the following form, in
accordance with (2.5),(5.5) and (5.6):

Nd0' = )/ S R*N,40 = (N + b [ON — N'ReV i1} dO
From thls we fina that
O 4RO —NNTwy), N =N+p(NNN—NR)V,  (5.8)
Recalling the definition of the tensor Vw
Vw = R'R'V,w; (5.9)
we may also write (5.8} in the form
N’ =N+ p(NN-Yw:-N—Vw:N) = N 4 pN x [N X (Vw-N)] (5.10)

As was to be expected, the vector N’ differes from N by a vector which
1ies in the plane of the area. Let us now also develop an expression for
the measure of deformation M’ which will be required below. From (5.5),
(2.3) and {5.8) we have

M’ =g"R/RyY =M +p(Yw)*- M + M -Vw) (5.11)
whence we also have
M= M2+ p(M2Vw42M-g- M 4 (Vw)*. M?) (5.12)

6. The stress tensor and the squilidrium equations. The difference of
the contravariant components of the stress tensors in the y’- and V-volumes

st — 8 e MpSl (6'1)
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will be considered. The stress tensor 7"’ in the V’'-volume and in the met-
ric of trat volume 1s then determined from (5.2) by Equation

T = v'R/R/ = T + pp"RR, + pr* (RWR,Vw, + RRV 0,) =

=T+ p(pPRR+T-Vw+ (VW T) =T +p8S (6.2)
where S 1is the symmetric tensor of the additional stresses
S = p'RR; +T-Vw + (Vw)*.T (6.3)

The equation of equilibrium in the V’~volume is written in the form
div' T +p'K' =0
Here p’K’ 18 the body force per unit volume and X’ 1s the body force

per unit mass K =K+ pk (6.4)

and the density p’ in the V/-volume is determined, according to Equations
(1.8) and (5.6), by Equation

OYG =pVG=p Vg (6.5)
Referring to (3.4) and (6.1), we have
1 4 13 '
V& 307 (VETR) + 0/ K+ pk) =0
Substituting the values of G’, v’*, R’ from (6.1),(5.6) and (5.2), we
find _ _
" L VA RO 4 pp) R+ BRViwg)] + po VE (K + k) = 0

or, from (3.4) 3

a° VGO R, + vV R? 4 pRy) + po Y gk = 0
But from (5.9) and (1.7)

. 1 a
T -Vw = RRT*"Vw,, vl -Vw = — —
VG dg
and the preceding equation may be written in the form

div (p"RR; + 0T -+ T-Vw) + pk =0

Therefore, by introducing the nonsymmetric second-order tensor

=840 —(Yw)*.T (6.6)
the equation of equilibrium may be put into the form
divE + ok =0 (6.7)

We now turn to the equation of equilibrium on the surface S’ .
The surface forge per unit area is determined by Equation
, d0
F'=F-5 +uf
where P 1s the surface traction on S . Then from (3.2)
0
FO | pte NI = NI (N — N)-T + No(T' — 1)

so that, referring to Equations (5.8),(5.10), (6.2) and (3.2), we have
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FA—p@+ N-Vw.-N)] +pf=F + u[FN-Vu.N—(Vw-N).T 4 N.§]

Remembering now that /W:N=N.(/W)* from (6.6), we arrive at Equa-
thon N.[S + 8T — (Vw)*.T] = N.3 = f (6.8)

Thus, the equation of equilibrium and the boundary condition are expressed

in terms of the same nonsymmetric second-order tensor ¥ .

7. The equation of state. The equation of state for the tensor T’ 1is
written in the form (%.3)

Yy VT = cO' M’ — W' M'® 4 (' G
Referring to (4.3),(5.5) and (5.6), we can write this equation in the form

1. VG /g (T'—T)+ pdT] =
= p(bOM — bOM £ HDG) + cO(M' — M) — V[ M’ — M?)
pbO = ¢ — c©®,  pbl) = @' — M, phD = 1 — (D
From Equations (6.2),(6.6) and (5.12), we now obtain
Y, VGl g2 =bOM —bOM? 4 b-DG 4 cOM - Vw —

— W (M2 Vw4 2M-e- M) — ¢ (Vw)* (7.1)
The expressions for the "moduli" H(s) remain to be formulated
() _ i ac() 60() ,
07 = o U — I = o

Here, according to (5.7)

iy = 288, ig) = 2(8], — I1gaG" G %ey,), g =200 (7.2)

and with the notation pj¥™® — aag

BO = iy (BB - [ bED) {1 oD, ba)= gy BE), BOD = i [b6R) 4 () (7.3)

By means of Equation (7.1) the tensor I 1s represented in the form of

we have

a linear differentlal operator of first order on the vector w . Substitu-
tion of this operator into the equation of equilibrium (6.7) and the bound-
ary condition (6.8) leads to a linear system of three second-order differen-
tial equations in the V-volume with linear boundary conditions on the surface
S 1in the absence of additional body forces and surface tractions (k = O,

£ = 0). This linear boundary value problem i1s homogeneous and the question
is to determine the bifurcation values of the parameters of the initial state,
e.g. the load parameters K or P , for which nontrivial solutions (w # O)

of the problem exist.

8. The compressed bdar. If the ?train energy density is given in the form
iu 8;, only the modulus bW)-1/lg‘ €4, 1s nonzero. Taking into account that
4.9) is satisfled in the 1n1t1a1 state, we can write the expression for the

tensor I 1n the form
s I = Ag*'e, M + p {— M oUW + M2UW + M+[Uw + (VW)*]- M}

where
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My N
M=RR, Vw=R"Rd,w, B, = 32, w,=R,-w
We then arrive at the following expressions for contravariant components
of E :
aliaao‘n' = }40 + Zpalwl, (11'030“ = Aﬂ + '&laawz
0 fay0"? = %050 = p (dyw; + dywy) (O = dw, + dqw, + Bywy) 8.1
a ool = p (dyw, + dgwy), €', 0% = U (Jqws + G3wy)

These are formulas which are analogous to Hook's law for the linear theory
of elasticity; in contrast to this

og? otg?
aptaett = p (0w + Jor o), oo’ = (et T o) y
a;’asc“=k0+2ﬂasws+l&( —:"%)33% ¢4
The equation of equilibrium {6.7) are written in the form (8.3)
G0 - g,0% 4 Gyo% =0, 9,01 + 850" - 903 = 0, 5,01 { 9,0 + 9y0% =0
The boundary conditions (6.8) on the lateral surface of the bar are
Nyl 4 N = 0, Nyo2 4+ Nyo¥ = 0, NG 4 N,o2 = 8.4)

Here N,= N+R, are the covariant components of the unit normal vector N,
with ¥N,= O ; on the ends X¥,# 0 , and the boundary conditions on the upper
free end a,= £ are written in the form (for a cantiliver beam)

ag=1; o1=0, o%=00%=0 (8.5)

Substituting (8.1) and (8.2) into the equation of equilibrium (8.3), we
arrive at a system of linear differential equation for the components of
the vector w

G33
(h+w) 210+ (D + 25 8n) =0
2
(A--p)ds0 + (D2w2 -+ %— Og%wy ) =0 (D3 =92 4 35?) (8.6)
g2
() 908+ [ Dy + (2 — 25) 0wt = 0
which differ from the equations in terms of displacements in the linear

theory of elasticity and reduce to them for az= a4
We shall seek the first group of special solutions in the form

wy = 3® +w,°, w,= 0+ w°, 1w, = ka0 {(k, w,°, w,° = const) ~ (8.7)
Substitution intc Eguations {B.6) leads to Equations
4 i—q gsf_) _ (1—9 ) f+g o
qzm:—%( Tkt ar)wo=0 (~ L+ mp+k(—q——&—sg—)aszmmo
_ =2y  p
LA TC ) R wem (8.3)

This last quantlty decreases monotonously from % to O as v increases
from O to % . If we now restrict the cholce of the constant k by the

conditions a2 k .
8
— 2= | — N
( Q)k+q“12 1—q 1 kg [ +q(t e )] e (8.9)
we arrive at the differentlial equations
D + 5202 ©s= 0 (s=1,2) (8.10)

where {,° are the roots of Equation
aﬁ

§4~§2[3—&§+q(§~—1)]+%+(gr—i)qzo (8.11)
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The discriminant of this equation may be represented in the form

ag? 2 [oyt ay?
A=(1-ET[E 20—+ o] (6.12)
and the roots of the quadratic in brackets are
R P S s
(%2)1:( t—g—1P ag —(V1—a+1)

The quadratic 1s negative between these roots. For a compressed bar
a,2/as?> 1, so that for all values of ¢ in the interval {0, #) the dis-
criminant (8.12) 1is negative for

1 < a2/ < (Vo + 172 =2914

and for these values of this ratio, the roots (;® and (,° are complex con-

Jugates. We seek a second group of particular solutions of the system (8.6)
in the form

wy = 0,¥, wy=—8¥, wyg=20 {0 = 0 {8.13)
where ¥ 1is determined by the differential equation
Ctaz
Dy + o ¥=0 (8.14)

The expressions for the components of the tensor £ corresponding to
the system of particular solutions (8.7) reduce to the following form, taking
account of (8.10):

i - 1 ag? 2
— Gy Utgl R e C—ga;g""‘l D*, 428, %0, {8.15)

1 1 ag?
o M (b, 30,0, oo (b o+ 5 ) 40,0,

1 oy? og? 9.2 .
& amso 2= (4= 200k, — Kigs — (1~ 20) 557 |00, (=12 m=12)
where the #, are expressed in terms of the (,? with the ald of (8.9).

For the solution (8.13), the expressions for the components of this ten-
sor- are

% a0l = — —:L‘ 032009628 = 20,3, ¥
% oy 20012 = % oy 20rg6? = (02 — ) ¥ == (DF — 201} ¥ = (202 — DY) ¥
-:: a209013 = d;05Y¥, % oo = — 0,0, ¥, 6® =10 (8.16)
% oy 201g6%t m== :—s; 8.05Y, -s; 20652 = ~— g—g‘ 310 ¥

The boundary conditions on the lateral surface of the bar are now written
in the form

0¥ =0

2
! 1—2¢ (1 aff 2 V"’...Aam]—-zv oy 42 9
5 [ (2 - oo,
5=1

(8.17)

2
' 1—2¢ /1 ag ) oy o @ _
)2 [N“"i-——qq‘(E?a‘:?”‘)p%”z?ﬁ“a‘@"%mp? 2o A =0

=1
2 a0
5[ that 1 55t + ] 0

s=1
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a a

W=N131+N‘zaz, ’3?=N132—N261

where the operational notation is introduced. These are proportional to the
normal and tangentiai derlvatives with respect to the arc of the contour of

the cross sectlon of the bar. Solutions of Equations (8.10) and (8.14) are

sought in the form

D = Z (ag) Pg (a1, 22), YV = Z (a3) } (a1, a5) (8.10)
and separation of the varlable a, leads to the differential equaticns
(132
2"+ WZ=0, D@,—Mjp =0, DWW — mip=0 (8.19)

Cancelling the factor depending on the variable a,, we now write the
boundary conditions (8.17) for the functions ¢, and ¢ in the form

2 2

129 (ag 1iﬂ’z] L oM o
2 [2(1—-11) (Eﬁ”csz)q’*"‘"ﬁ aNt | T N B
s=1

2 2 o9
3 L0 0 (laty 1O oS g+t 4oy (820
WM ON 5 ' 2al AT ONT T 1( s T oy + 55 =0 )

s=1

where
2 a a
i‘,'a[v_z = N120;% + 2N1N010; -+ N0, N d5 = NilV2 (95" — 812) 4- (N2 — N32) 9,0,

The assumption na - 8.1
.—_8 = — '2

satisfies the third condition of (8.5) on the upper end; the two remaining
conditions are satisfied .on the average. This follows from the equilibrium
equations (8.3) and the boundary conditions (8.4), since over the whole bar

3 S S $¥Mg0 - gﬁ (Ni5'™ 4 Nys?™) do — 0, S S ™ d0 — const

and this constant 1s equal to zero, since o3"= 0 for az= O , which is a
consequence of (8.15),(8.16) (8.185 and (8.21). It 1s also easy to prove
that no torsional moment 1s present; its derivative 3, 1is also equal to
zero for all a,

35 S S (6:16% — a;69) d0 — — S S [a1 (31622 - 9,6%2) — a (3161 + d567)] dO =
= SS (612 —352) d0 =0

We note in addition that at the lower end wyz==0, 83w, = dw, = 0 from
(8.7) and (8.13); 1w, and w, can be made equal to zero at some point of the
end @3= O by the cholce of the constants w,° and w,® . In this sense the

end G;= 0 1s "clamped".

9. A bar of circular oross section. With the object in view of examining
an equilibrium shape in which the axis of the bar does not remain straight,
let us assume 9.1)

. ay . Qg
¢, = R, (Ar)cos 0, Y= R(Ar)sin0 (r =Vat+a? cosb=-7, sing= —7)
The functions, R, and R are determined in accordance with (8.19) by

Equations
R
St ) R=0 (@@= (02)

” 1 _, . 1 " 1 R
RS+ R/ — (L +57 ) R,=0, " - H — p~
The solutions of these equations that are finite at x = 0 are expressed
in terms of a Bessel function with imaginary argument by

Os
R, =C,I, (=), R=CI (31— 97) (9.3)
where the constants (¢, are complex conjugates and ¢ 1s real. Substitution
.20), taking (8.9) into account, leads to a system of equations which
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is linear in these constants

2
2 3
;2}1 C, (ks + 25) 1a(e) + 25 €1 ()=0

2
1 215 (p) a
Col —_ — g
2_}1 #ola (p,) + 3 Co*L1 (p) [1 ’B’lﬂT(}T] =0 (ps =t =2 zo) (9.4)

2
2 Colk,+ ) Ip Iy (p)— Iy (p)] + €1y (p) =0
8=]
In obtaining this we have used the differential equations é9.2), well
known transformations of Bessel functions, and the relation (8.9).

Equating the determinant of the system of equations (9.%) to_zero, we
arrive at an equation which relates the parameters x,° and o5°/a,®. After
dividing out ((s3®— ¢;?), this equation reduces to real form, since (¢, and
{2 then enter only in terme of their sum and product. ‘The computations are
cumbersome, but only small values of the quantities xo% and 1 — q3°/a,%= ¢
which are of the same order of magnitude are of interest. Then §3é13+ ()]
and (,%(,® differ from unity by terms of order ¢ , according to .11).

Retaining only linear and quadratic terms in ¢ and xo?, we have
2(1 —qle —Yyzd (3 —4g) —2(1 — q¥e+ [/, (1 — @) + B/ylexd + (9.5)

+ M5 (1 — @] 2t =
Dropping nonlinear terms, we find in the first approximation that
E__ _xxoz 3—4q _m?
Imw == 3a—g =7 U+V (9.6)

Thus x,®>0 for ¢ > 0, i.e. for a compressed bar. Returning to Equa-
tions (4.10) and (%.11) we find in this approximation

2 roZA2
1—a? =Y, |Q|=ES, 4 = ES, "~ = EIR=Q, (9.7)

where, as was to be expected, Q, 1is the Euler critical value of the com-
pressive force (J 1s the moment of inertia of the cross section).

In thée second approximation

e =1z (1 + v) — Y33 (1 + ¥gyv — Mg¥?) 2t 9.8)
and again turning to Equations (4.10) and (4.11), we find
{Ql 1 1 17 4 + S/aqv — 5/ggv?
Q. 1— 5 (g vt g v ) 9.9)
so that for v =0 and vy = % we have, respectively,
1Q |Q1 )
~ 1 — 3.08xz,2, - 21— 2.9b63¢% .
Q, Z, Q, 1 — 2.6y (9.10)

10. Oomments and references to the literature. The general tensorial
relations of the nonlinear theory of elasticity which were briefly enumerated
in Sections 1 to 4 are explalned in the books [1 to 3] and in paper [%4].

The latter reference also contains an exhaustive bibliography on nonlinear
continuum mechanics up to 1953.

A derivation of the differential equations of equilibrium shapes near a
given equilibrium state using the energy method is given in [5] and in Chap-
ter IX of L6]. A direct construction of the equations of statics of an ini-
tially stressed medium in the case of a general state of stress 1s carried
out in Chapter IV of [1], and one based on an intuitive geometric method 1s
given in [7]. The latter is presented in greater detail in the book [8].
The energy approach to the problem ls also developed in the well known
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papers [9 and 10]. The author of this paper 1s not aware of any works in
which the bifurcation values of load parameters are found on the basls of
an examination of a three-dimensional problem of equilibrium of an initially
stressed elastic body (Sections 8 and 9 of the present paper).
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